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a b s t r a c t

This paper describes EXPRESS (EXchange Program for RElaxing Spin Systems), a computer program that
simulates the effects of Markovian jump dynamics for a wide variety of solid state nuclear magnetic res-
onance experiments. A graphical interface is described that facilitates the definition of rotational jumps
around non-commuting axes that may occur at arbitrary, different rates. Solid state deuteron NMR is
widely used to investigate such processes, and EXPRESS allows simulations of deuteron quadrupole echo
and magic angle spinning line (MAS) shapes, as well as partially relaxed line shapes for measurements of
anisotropic relaxation of Zeeman and quadrupolar order. Facilities are included for chemical shift tensors
(at user-defined orientations relative to the quadrupole coupling tensors), so that EXPRESS is potentially
useful for studies of paramagnetic systems where these interactions are of comparable magnitude. Many
of the same techniques used for deuterons can be extended to half-integer quadrupolar nuclei. The same
interface that specifies rotational ‘‘sites” for deuteron NMR studies is usable in EXPRESS to simulate static
line shapes, MAS line shapes, and multiple pulse Carr–Purcell–Meiboom–Gill (CPMG) line shapes for the
central transition of high spin quadrupoles with second order quadrupole coupling and chemical shift
anisotropy. Representative simulations are displayed that show effects of slow libration on deuteron
quadrupole echo line shapes and relaxation time anisotropies. EXPRESS is also used to investigate funda-
mental differences in the mechanism of echo formation in deuteron MAS and quadrupole CPMG exper-
iments, and to illustrate significant differences between these techniques in the context of high spin
quadrupolar nuclei. The program is modular and platform-independent, with facilities for users to add
routines for experiments not yet envisioned.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction commercially available magic angle spinning (MAS) probes capa-
Nuclear magnetic resonance (NMR) has long been used to
investigate rotational motion in solids, on timescales set by the
magnitude of orientation-dependent, single-particle spin interac-
tions such as chemical shift anisotropy [1] and quadrupole cou-
pling [2,3]. Deuteron NMR has emerged as a premier technique
for quantitative studies, in part because the dominant (first order
quadrupole) interaction is both small enough to be experimentally
tractable and large enough to provide a wide kinetic window [4].
Artifact-free line shapes can be obtained by the well known quad-
rupole echo experiment [5,6,2], and the experimentally accessible
kinetic window (rates between �104 and 107 s�1) can be extended
by several orders of magnitude on the low end by measuring the
decay of quadrupole order (aka, spin alignment) [7,8], and on the
high end by measuring the orientation dependence of individual
spectral densities that govern relaxation of Zeeman (T1Z) and
quadrupole (T1Q) order [9,10]. More recently, the advent of
ll rights reserved.
ble of stable, high speed spinning (>20 kHz), variable temperature
operation combined with significant advances in computational
power, make magic angle spinning an attractive alternative to
measurements of quadrupole echo line shapes [11–15]. There is a
growing awareness [16,17] that many of the same techniques
developed in the context of deuteron NMR can be extended to
the more complicated arena of half-integer quadrupoles, where
line shapes of the central transition are governed by a combination
second order quadrupole coupling and chemical shift anisotropy.

A common feature shared by all these NMR techniques is the
description of rotational motion by a specific model, and fitting
the model to experimental data by adjusting parameters that repre-
sent the rates and detailed trajectories of motion. One class of mod-
els, widely used to describe motional effects in electron spin
resonance (especially of liquid crystals and other ordered fluids) is
based on solving the stochastic Liouville equation for (anisotropic)
rotational diffusion in presence of an anisotropic pseudopotential
[18–22]. This approach is effective for systems in which the multi-
dimensional potential energy surface that governs the motion has
low barriers and wide valleys, but is less appropriate for highly con-
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strained environments such as molecular crystals. In the latter case,
it is plausible to describe the motion by sudden (Markovian) jumps
among a number of discrete orientational ‘‘sites”. In this context,
specifying a motional model amounts to defining the number, rela-
tive orientations, and relative populations of the sites as well as
which sites are to be ‘‘connected” by jumps at specified rates.

Simulating the effects of intermediate time scale dynamics on
NMR experiments is a daunting task. For all but the very simplest
motional models, numerical solution of coupled sets of ordinary
differential equations is required, and the problem is compounded
for polycrystalline or amorphous materials by the need to sum the
solutions over hundreds or thousands of crystallite orientations.
General purpose programs for simulating deuteron quadrupole
echo line shapes for discrete jumps among N-sites have long been
available [23,24]. The multi-axis jump formalism of Greenfield
et al. [23] has been extended using procedures described by Griffin
et al. [25] to simulate experiments designed to measure aniso-
tropic T1Z [26] and more recently, T1Q [27,28]. However, these pro-
grams rely extensively on obsolete FORTRAN code and are difficult
to modify for simulations of more modern experiments such as
magic angle spinning. Programs designed to simulate effects of
motion for specific experiments and relatively simple N-site jump
models have been described in the literature [11,29–
32,13,33,34,14,16,35,15,17,36] but we are unaware of any program
that can simulate effects of intermediate time scale dynamics on
all of the experiments mentioned above.

This paper describes an Exchange Program for Relaxing Spin Sys-
tems, EXPRESS, that provides a common interface for simulating
effects of motion on all types of pulsed NMR experiments. Coded
in MATLAB, it is platform-independent and easy to modify. While
not fully optimized for computational efficiency, direct compari-
sons with equivalent hand coded FORTRAN or C routines shows
that EXPRESS code typically runs 2–4 times faster than compiled
code similar to that used in the QE line shape program MXQET
[23]. The program features a graphical user interface (GUI) with
on-line help features, designed to make it more readily accessible
to non-specialists in the art of slow motion simulations. In Section
2 we present the theory and algorithms used in EXPRESS, including
a discussion of multi-axis jump dynamics and the tensor conven-
tions used for chemical shift anisotropy, first order quadrupole,
and second order quadrupole interactions. In Section 3 we illus-
trate features of the GUI and discuss problems related to the pleth-
ora of parameters that arise in complex multi-site motional
models. In Section 4 we illustrate typical applications of EXPRESS
by using it to analyze several features of multi-axis jump motion
for deuteron systems, and to investigate theoretical problems that
arise with motion of half-integer, high spin quadrupolar nuclei.

2. Theory

2.1. Stochastic Liouville formalism

EXPRESS simulates NMR line shapes and relaxation times by
solving the stochastic Liouville equation for the spin density ma-
trix, where motion is incorporated as discrete Markovian jumps.
Thus, if qjðtÞ ¼ qðXj; tÞ stands for the (reduced) density matrix for
spins in a molecular fragment specified at time t by a set of Euler
angles Xj ¼ ðaj; bj; cjÞ with respect to a molecule-fixed reference
frame, EXPRESS describes the time evolution of in terms of jumps
between N discrete orientational sites j,k, l,. . .:

dqðjÞ

dt
¼ i½qðjÞ;HðjÞðtÞ� þ

XN

k¼1

Pðj; kÞqðjÞPðj; kÞ � qðjÞ

sjk
ð1Þ

Here, HðjÞðtÞ is the Hamiltonian for interactions between spins in
orientational site j among themselves and with their surroundings,
P(j,k) is a permutation operator that interchanges the site labels j
and k, and kjk ¼ 1=sjk is defined as the average rate of jumps from
site k to site j (note the order of the subscripts). The sites may have
unequal populations at thermal equilibrium, and the forward and
reverse rates are then related by the principle of microscopic
reversibility, pkkjk ¼ pjkkj, where pj is the population of site j.

In its present form, EXPRESS considers only a small subset of the
density matrix elements implicit in Eq. (1). In absence of rf fields,
HðjÞðtÞ becomes time independent (in the rotating frame). The time
dependence of transverse magnetization, needed to compute line
shapes for stationary and/or rotating samples, is then obtained
from the subset of density matrix elements corresponding to 1-
quantum coherence in each site. Thus if the vector mj ¼
½qðjÞpqðtÞ;qðjÞrs ðtÞ;qðjÞtu ðtÞ:::� represents the 1-quantum coherences in site
j, the relevant subset of density matrix elements is Eq. (1) is gov-
erned by the equations

d
dt

mð1Þ

mð2Þ

..

.

mðNÞ

2
66664

3
77775 ¼ i

Xð1Þ 0 0 0
0 Xð2Þ 0 0
0 0 . . . 0
0 0 0 XðNÞ
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. . .

mðNÞ

2
6664

3
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þ
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..
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� � � ..

.

0 kn2I L knnI
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77775

mð1Þ

mð2Þ

..

.

mðNÞ

2
66664

3
77775 ¼ A

mð1Þ

mð2Þ

..

.

mðNÞ

2
66664

3
77775 ð2Þ

where I is the N � N identity matrix and kjj ¼
PN

k–j;1kkj. The XðjÞ in
Eq. (2) are diagonal matrices, whose elements are the correspond-
ing 1-quantum precession frequencies for site j. When rf fields are
present, the first term of Eq. (1) mixes coherences of different order
and it would be necessary to expand Eq. (2) to include all density
matrix elements, diagonal and off-diagonal. The solution is then
practical only in the simplest cases [37], and is beyond the purview
of EXPRESS.

EXPRESS can simulate partially relaxed line shapes for Zeeman
relaxation (T1Z) and relaxation of quadrupole order (T1Q), but only
for spin I = 1. In this case only, Zeeman order MðjÞ

Z ðtÞ and quadru-
pole order Q ðjÞZ ðtÞ associated with site j are given by

MðjÞ
Z ðtÞ ¼ qðjÞ11ðtÞ � qðjÞ33ðtÞ

Q ðjÞZ ðtÞ ¼ qðjÞ11ðtÞ � 2qðjÞ22ðtÞ þ qðjÞ33ðtÞ
ð3Þ

where the spin eigenstates are 1j i ¼ þj i, 2j i ¼ 0j i, and 3j i ¼ �j i
respectively. In absence of jumps between orientational sites,
MðjÞ

Z ðtÞ and Q ðjÞZ ðtÞ for each site, j, would evolve independently in
time according to the relations:

MðjÞ
Z ðtÞ ¼ MðjÞ

Z ð1Þ þ e�RðjÞ
1Z

t MðjÞ
Z ð0Þ �MðjÞ

Z ð1Þ
� �

Q ðjÞZ ðtÞ ¼ e�RðjÞ
1Q

tQ ðjÞZ ð0Þ
ð4Þ

where the relaxation rates R1Z and R1Q of Zeeman and quadrupolar
order are given by

RðjÞ1Z ¼
1

TðjÞ1Z

¼ 3p2

2
CðjÞQ

� �2
JðjÞ1 ðx0Þ þ 4JðjÞ2 ð2x0Þ
h i

RðjÞ1Q ¼
1

TðjÞ1Q

¼ 9p2

2
CðjÞQ

� �2
JðjÞ1 ðx0Þ

ð5Þ

The spectral density functions, JðjÞ1 ðx0Þ and JðjÞ2 ð2x0Þ, refer to rapid
motions entirely within site (j), over which HðjÞðtÞ in Eq. (1) is as-
sumed to be averaged.

In principle, the Markovian jumps included in Eq. (1) then cou-
ple the time evolution of MðjÞ

Z ðtÞ to that of MðkÞ
Z ðtÞ (but not to Q ðkÞZ ðtÞ).

When the jump rates are large compared with the difference in the
intrinsic site-dependent relaxation rates,
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kjk � RðjÞ1Z;1Q � RðkÞ1Z;1Q

��� ��� ð6Þ

then the Zeeman and quadrupolar order in each site relaxes (indepen-
dently) at the same average rate hR1Zi and hR1Q i, respectively. Slower
motions can profitably be studied by one or two dimensional satura-
tion transfer experiments. Currently EXPRESS does not simulate such
experiments. Instead, it makes the implicit assumption that Eq. (6) is
always valid (even though the user can enter the value zero for any
desired jump rate), and ignores the intrinsic relaxation rates (Eq.
(5)) in comparison to spin lattice relaxation induced directly by the
sudden orientational jumps from site to site. It then follows that the
relaxation of Zeeman and quadrupole order associated with each site
(whether or not the corresponding 1-quantum precession frequencies
are motionally averaged) is given by dropping the now irrelevant site
label superscript (j) from Eqs. (3) and (4).

In many cases of practical interest, the quadrupole coupling
constants (and asymmetry parameters) may change from site to
site. In most previous formulations, this phenomenon was taken
into account (usually implicitly) by averaging ðCðjÞQ Þ

2 in Eq. (5) over
the sites connected by jumps. This incorrect procedure fails to ac-
count, for example, for relaxation of a quadrupolar nucleus that
jumps from a liquid site with CQ = 0 to an asymmetric site in a solid
where CQ is non-zero. EXPRESS includes the site-dependent quad-
rupole coupling parameters as part of the Hamiltonian, which are
assumed to switch randomly (at average rate kjk) between sites j
and k. Thus, EXPRESS simulates the time evolution of diagonal den-
sity matrix elements for each site according to Eqs. (3) and (4),
with relaxation rates given by

RðjÞ1Z ¼ 1=TðjÞ1Z ¼ J1ðx0Þ þ 4J2ð2x0Þ
RðjÞ1Q ¼ 1=TðjÞ1Q ¼ 3J1ðx0Þ

ð7Þ

where it can be shown that the spectral densities JMðMx0Þ are given
by weighted sums of at most N � 1 Lorenztian functions of the form
Akkk=ðk2

k þM2x2
OÞ, where the kk are the non-zero eigenvalues of the

kinetic matrix K = {kjk}. The weighting factors Ak are messy func-
tions of the eigenvectors of K and the site orientation angles, and in-
clude cross products of the form CðjÞQ CðkÞQ .

For spin I = 1, the relaxation time T1Q of quadrupole order due
to jump motion is determined exclusively by a single spectral
density function, J1ðx0Þ. When the correlation time(s) for jump
motion are short enough to yield significant contributions to this
spectral density, measurements of the anisotropy of T1Q (for
example, by means of broad band Jeener–Broekaert excitation
[38]) can profitably be combined with T1Z anisotropy to determine
the orientation dependence of both spectral densities. EXPRESS
simulates (ideal) broadband Jeener–Broekaert excitation simply
by initial inversion of one half of the powder pattern. If this is
not achieved in practice (and it never is), the simulated partially
relaxed line shapes should not be matched to experimental ones,
because the experimental initial excitation profile will never
match the simulated one. However, it is still entirely possible to
fit corresponding points on the simulated and experimental line
shapes to exponential recovery curves, and match the correspond-
ing relaxation rates to determine the anisotropy of J1ðx0Þ. This
procedure is illustrated in Section 3.

2.2. Multi-axis jump processes

EXPRESS addresses a broad range of N site problems, for which
the site orientations are specified in terms of sets of successive

rotations. The first rotation, Xð1Þj ¼ ða
ð1Þ
j ; bð1Þj ; cð1Þj Þ, rotates the princi-

pal axis system for the relevant interaction tensor into coincidence
with an intermediate jump frame, F1. N1 such rotations can be
specified, j = 1,2, . . .N1. The connectivity of these sites is specified
by N1(N1 � 1)/2 independent, non-zero entries of a kinetic matrix
K1. In many cases, a single rate constant suffices to describe these
jumps. For example, 3-fold hops of a methyl group about its C3 axis

are described by the matrix K1 ¼ k3

�2 1 1
1 �2 1
1 1 �2

0
@

1
A. A second

rotation, Xð2Þk ¼ ða
ð2Þ
k ; bð2Þk ; cð2Þk Þ, may then be defined to rotate the

intermediate jump axes into any of N2 different orientations with
respect to a molecule-fixed reference frame. For example,
librational motion of the methyl C3 axis defined above might
be modeled by jumps among 4 sites that define the boundary
of a narrow cone, with corresponding K-matrix

K2 ¼ kcone

�3 1 1 1
1 �3 1 1
1 1 �3 1
1 1 1 �3

0
BB@

1
CCA or alternatively,

K2 ¼ kcone

�3 1 1 1
1 �1 0 0
1 0 �1 0
1 0 0 �1

0
BB@

1
CCA. In both these examples, there

are 12 sites but only two independent jump rates.
A well known theorem states that the product of any two rota-

tions is also a rotation. Thus, the set of N1N2 sites defined by the
double rotation Xð2ÞXð1Þ can equally well be described by specifying
N1N2 values for a single, composite rotation. It should be noted that
the order in which the rotations are performed is important;
Xð2ÞXð1Þ is not the same as Xð1ÞXð2Þ. EXPRESS allows users to enter
site orientation angles and jump rates frame by frame, and auto-
matically computes and displays the equivalent one-frame repre-
sentations of site orientations and jump rates prior to computing
the time evolution of relevant single quantum coherences.

2.3. Conventions for Euler angles

Since EXPRESS simulates the effects of jump dynamics on a
wide variety of NMR experiments involving many different inter-
actions, it is particularly important that definitions and conven-
tions with regard to tensor interactions, principal components,
Euler angles, etc. be clearly stated and consistently used.

Few topics in NMR offer more opportunities for confusion than
the conventions used to describe the rotations needed to describe
tensor interactions in various coordinate systems. EXPRESS is
based on Rose conventions [39,40]; the user is warned that these
differ from those of Edmonds [41] or Goldstein [42]. In particular,
if R(a,b,c) is the operator that rotates the Principal Axis System
(PAS) of a particular Cartesian tensor into coincidence with a refer-
ence frame fixed in the laboratory, EXPRESS makes use of the fol-
lowing matrix representation:

Rða; b; cÞ ¼ e�iaIZ e�ibIY e�icIZ

¼
cos a � sina 0
sin a cos a 0

0 0 1

0
B@

1
CA

�
cos b 0 sin b

0 1 0
� sin b 0 cos b

0
B@

1
CA

cos c � sin c 0
sin c cos c 0

0 0 1

0
B@

1
CA ð8Þ

This operator describes a rotation first through angle c about the
PAS z-axis, then through angle b about the original (PAS) y-axis
and finally by angle a about the original (PAS) z-axis. As discussed
by Brink and Satchler [40, p. 20], this same rotation is obtained by
first rotating through angle a about the PAS z-axis, then through an-
gle b about the new (intermediate) y-axis, and finally through angle
c about the next (second intermediate) z-axis. The first sequence is
easier to visualize, but both give the same result.
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It is not entirely trivial to determine the actual Euler angles,
(a,b,c), for the single rotation that is equivalent to R(a1,b1,c1) fol-
lowed by R(a2,b2,c2). One way to do this is to construct the two
individual matrices R1 and R2 using Eq. (8), then compute their
product R = R1R2 numerically, perform the three multiplications
specified in Eq. (8) analytically to obtain corresponding algebraic
expressions for individual elements of the composite rotation ma-
trix, and the resulting equations to obtain the desired angles. For
example, R33 turns out to be just cos(b), so that b for the composite
rotation is just cos�1[(R1R2)33]. In MATLAB, the ACOS function re-
turns angles between zero and p (radians), while the ASIN function
returns values between �p and +p. Considerable care is needed to
ensure that the Euler angles a and c are defined instead on the con-
ventional interval 0 6 (a,c), 62p.

Each orientational site within a given jump frame is specified by
Euler angles (a,b,c) for the rotation that rotates the coordinate
axes for this site into coincidence with the reference axes of the
next frame. This process begins with the Principal Axis System
(PAS) for the EFG tensors (for experiments involving spin I > 1/2)
or CSA tensors (for I = 1/2). It is important to note the ‘‘direction”
of the rotations: PAS ? (intermediate frame(s)) ? crystal-fixed (or
rotor fixed) axes. Each rotation is specified with respect to axes
fixed in the frame from which it starts.

2.4. Conventions for tensor interactions

The Hamiltonian operator for a spin in a solid sample, placed in
a strong, constant magnetic field~B ¼ B0ẑ, can be written in terms of
the Zeeman part, H0=�h ¼ �x0IZ ¼ �cB0IZ , and a sum of terms that
account for all the relevant spin interactions. The universal NMR
convention [43] calls for frequencies to increase towards the left.
The natural units of H (more precisely, H=�h) are radians/sec, not
hertz, kilohertz, or ppm. Thus, if x is a typical frequency, the quan-
tity xt (in radians) is dimensionless when time t is expressed in
seconds. Motional rates, k, are specified in inverse seconds, s�1,
so that kt is also a dimensionless quantity. It is both confusing
and incorrect to refer to jump rates in ‘‘hertz” or ‘‘kilohertz”—one
hertz is 2p times one inverse second. In EXPRESS, frequencies en-
tered as hertz, kilohertz, or ppm are converted internally to radi-
ans/sec before being used in any computations, in order to
minimize the chance of unit conversion errors. Rates are entered
in units of inverse seconds, s�1.

EXPRESS deals with chemical shift anisotropy, first order quad-
rupole, and second order quadrupole interactions. The number of
different conventions appearing in the literature on these interac-
tions is second only to the number of different conventions used
to define Euler angles. Unfortunately, this makes it rather difficult
to compare simulations performed with different programs. We
offer no solution to this problem, other than to state as clearly
as possible the following definitions that are used in EXPRESS.
The Hamiltonian operator can be written as the following sum
of terms:

H ¼ HZ þ HCS þ HQ ð9Þ

where

HZ ¼ �x0IZ ¼ �cB0IZ

HCS ¼
X2

L¼0

XL

M¼�L

ð�1ÞMRðCSÞ
L;M T ðCSÞ

L;�M

HQ ¼
X2

L¼0

XL

M¼�L

ð�1ÞMRðQÞL;MTðQÞL;�M

ð10Þ

Here, the TL,M are spherical irreducible tensor spin operators and the
RL,M are orientation-dependent functions of the relevant interaction
strengths (not to be confused with the rotation matrices discussed
in the preceding section). Eq. (10) is valid in any coordinate system.
For convenience in calculating the spin response, it is usual to focus
on laboratory fixed coordinates (along B0 along Z).

2.5. Quadrupole coupling

In this case, the TL,M are given for the quadrupole interaction by

TðQÞ0;0 ¼ T ðQÞ1;0 ¼ TðQÞ1;�1 ¼ 0

TðQÞ2;0 ¼
1ffiffiffi
6
p ð3I2

Z � I � IÞ

TðQÞ2;�1 ¼ 	
1
2
ðIZI� þ I	IZÞ

TðQÞ2;�2 ¼
1
2

I2
�

ð11Þ

The L = 0 and L = 1 tensors in these expressions are not really zero,
but they vanish exactly from the Hamiltonian in Eq. (10) because
the electric field gradient tensor, which appears in the correspond-
ing RðQÞL;M terms, is symmetric and has zero trace. Thus, only the L = 2
terms survive, and we may write

RðQÞ2;MðLABÞ ¼
X2

K¼�2

RðQÞ2;K ðPASÞDð2ÞK;MðaQ ðtÞ;bQ ðtÞ; cQ ðtÞÞ ð12Þ

Here, the time independent quantities RðQÞ2;KðPASÞ are given by

RðQÞ2;0 ðPASÞ ¼
ffiffiffiffiffiffiffiffi
3=2

p e2QqZZ

2Ið2I � 1Þ�h

� �

¼
ffiffiffiffiffiffiffiffi
3=2

p 2pCQ

2Ið2I � 1Þ

� �
¼

ffiffiffiffiffiffiffiffi
3=2

p
xQ

RðQÞ2;�1ðPASÞ ¼ 0

RðQÞ2;�2ðPASÞ ¼ 1
2
xQgQ

gQ ¼
qXX � qYY

qZZ

ð13Þ

The quantities eqXX, eqYY, and eqZZ are the principal components of
the electric field gradient (EFG) tensor. Early practitioners of nuclear
quadrupole resonance [44] established the now universally ac-
cepted convention that the axis of the numerically largest EFG com-
ponent is labeled Z, and the other two axes labeled such that the
asymmetry parameter, gQ, is restricted to the range 0 6 gQ 6 1.
Many authors interchange the definition used here in Eq. (13) for
X and Y. Formulae derived by those authors differ from those used
in EXPRESS by changing the sign of terms that depend on odd pow-
ers of gQ. Occasionally, papers may be found with gQ defined as in
Eq. (13), but with RðQÞ2;�2ðPASÞ defined as �xQgQ=2. In those papers,
no sign change need be made for comparison with EXPRESS formu-
lae. This lack of consistent notation may be called ‘‘migration of
signs”. Unfortunately, the literature is also replete with migration
of the mysterious numerical factors, e.g., (�1)M,

ffiffiffiffiffiffiffiffi
1=6

p
, ±1/2,ffiffiffiffiffiffiffiffi

3=2
p

, etc that appear in Eqs. (11)–(13): they tend to be partitioned
differently by different authors between the tensor spin operators
TL,M and the corresponding lattice functions RL,�M. However, the
partitioning of the numerical factors is NOT completely arbitrary.
In particular, the numerical factors displayed in Eq. (4) for the ten-
sor operators arise from their definition as a normalized, irreducible
representation of the full rotation group and if this normalization is
not used, then the basic transformation equation, Eq. (5), is no long-
er valid. Finally, some authors refer to xQ as ‘‘the quadrupole cou-
pling constant”, and others may define xQ to be three time larger
than implied by Eq. (13). Note also the use of �h in Eq. (13); the quad-
rupole coupling constant, CQ ¼ e2QqZZ=h, has units of Hz. Despite
these difficulties, there is by now almost universal agreement that
the fundamental quantities measured by NMR should be reported
as CQ (in Hz, kHz, or MHz) and gQ.
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2.6. Chemical shift anisotropy

The chemical shift Hamiltonian is more complicated than the
quadrupole Hamiltonian, because the shielding tensor, unlike the
EFG tensor, is neither traceless nor symmetric. The expressions
used in EXPRESS are entirely consistent with those described in de-
tail by Duer [45]; an abbreviated discussion is presented here.

It is possible to represent any second rank tensor as the sum of a
symmetric 3 � 3 matrix and an antisymmetric, traceless 3 � 3 ma-
trix. It can be shown [46,47] that the antisymmetric part of the
shielding tensor can contribute to spin lattice relaxation, but it
never has any significant effect on the orientation-dependent line
shape. The antisymmetric part of the shielding tensor is ignored
in EXPRESS line shape simulations. Recognizing that in laboratory
coordinates (only!),~B ¼ B0z, the relevant terms in Eq. (10) are then
given by

TðCSÞ
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1ffiffiffi
3
p B0IZ
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1
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1ffiffiffi
6
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ffiffiffiffiffiffiffiffi
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p
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2;�1 ¼ TðCSÞ
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ð14Þ

and

RðCSÞ
0;0 ðLABÞ ¼ � cffiffiffi

3
p ðr11 þ r22 þ r33Þ

RðCSÞ
2;M ðLABÞ ¼ c

X2

K¼�2

RðCSÞ
2;K ðPASÞDð2ÞK;MðaCSðtÞ; bCSðtÞ; cCSðtÞÞ

ð15Þ

We note in passing that the term TCS
00RCS

00, which is independent of
orientation, gives rise to the isotropic chemical shift. If this is site-
dependent, it will contribute to the dynamic line shape as com-
puted by EXPRESS.

It is convenient at this point to depart (slightly) from rigorous
consistency with the general theory of irreducible tensor operators
and drop the minus signs from both TCS

00 and RCS
00, transfer the con-

stant factor B0 from Eqs. (14), (15), and transfer the factor
ffiffiffiffiffiffiffiffi
2=3

p
from TðCSÞ

2;0 in Eq. (14) onto the associated RðCSÞ
2;M ðPASÞ. Since

TðCSÞ
2;�1 ¼ T ðCSÞ

2;�2 ¼ 0, this does not invalidate the basic transformation
expressions. Thus, EXPRESS makes use of the revised definitions
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where now,
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Eq. (18) serve to define the chemical shift anisotropy, Dr, and the
associated asymmetry parameter, gCS. In EXPRESS, these quantities
(along with the isotropic shift, riso ¼ ðr11 þ r22 þ r33Þ=3) can be
specified for each site. The definitions of Dr and gCS are those sug-
gested originally by Haeberlen [47], and are in accord with the most
recent IUPAC recommendations [48]. It should be noted that the lat-
ter recommendations also allow an alternative definition of Dr that
is larger than ours by a factor of 3/2.

2.7. Second order quadrupole effects

For half-integer quadrupolar spins I > 1, EXPRESS includes sec-
ond order effects of the quadrupole Hamiltonian, based on the for-
malism presented by Goldman et al. [49]. In essence, this amounts
to starting with a Hamiltonian, H = H0 + H1, and a known basis w0j i
in which H0 is diagonal, and then deriving a set of operators
H(1),H(2), . . . that commute with H0 and whose matrix representa-
tion in the w0j i basis yield well known second order expressions
for the eigenstates. The second order quadrupole Hamiltonian is gi-
ven by:

Hð2ÞQ ¼ �
x2

Q

xL

X2

m>0

R2;mR2;�m
½T2;m; T2;�m�

m
ð19Þ

where the T2,m are given by Eq. (11) and corresponding R2,m are gi-
ven by Eqs. (12) and (13). Explicit expressions for the site frequen-
cies of the central transition in terms of CQ, g, and Euler angles
relating PAS to lab fixed axes can be found the literature
[50,51,16,52]. EXPRESS uses formulae presented in Ref. [51] for sim-
ulating powder patterns of non-rotating samples, and formulae gi-
ven by Zheng et al. [50] for rotating samples.

2.8. Spin lattice relaxation

In its present version, EXPRESS can simulate the effects of jump
motion on spin lattice relaxation time anisotropy as monitored by
partially relaxed quadrupole echo line shapes or multiple quadru-
pole echo trains, but only for spin I = 1 (e.g., deuterons). The algo-
rithm was first described by Wittebort, et al. [24]. The extension to
multi-axis jumps is described in Refs. [26] and [28]. However, in
Ref. [26] the correlation functions hR2;mðtÞR
2;mðt þ sÞi are all nor-
malized to unity at s = 0, a procedure which requires that every site
has the same CQ. In earlier programs based on Ref. [26], such as
MXQET [23], it was possible to define site-specific CQ values but
when these programs were modified to include spin lattice relax-
ation, all spectral densities were scaled by the average CQ. In Eq.
(6) above, the CQ value for each site has been incorporated into
the definition of R2,m(t). This makes it possible, for example, to de-
fine all sites to have the same PAS orientation, but different values
of CQ. When one site has CQ = 0, the effect is to simulate spectral
densities for exchange between solid and liquid phases. The fea-
ture was not available in earlier programs.

In principle, the effects of jump motion on quadrupole relaxa-
tion of nuclei with spin I > 1 is governed by the same two spectral
density functions, J1ðx0Þ and J2ð2x0Þ, that occur in the formulation
for I = 1. However, in most experimental situations this is not the
dominant process. Instead, relaxation is often found to proceed
through modulation of the electric field gradient tensor due to lat-
tice vibrations (formulated as a second order Raman process [53]).
Moreover, the recovery functions are sums of exponentials whose
relative weights depend in a complicated way on the initial excita-
tion conditions as well as the spin I and the relative magnitudes of
J1ðx0Þ and J2ð2x0Þ. As currently coded, EXPRESS is not sufficiently
general to deal with these problems.



Table 1
EXPRESS simulation options. Listed with each option is the relevant time scale
(kinetic window) based on typical values for the relevant interaction strengths. A
separate, self-contained subroutine is used to simulate each type of experiment,
based on parameters passed to it as a single data structure.

Experiment Timescale Comments

2H QE 105–107 s�1 Its traditional. . .
2H T1Z 108–1012 s�1 IR w/QE detection
2H T1Q 108–1012 s�1 Broad band excitation w/echo detection
2H QCPMG 103–108 s�1 Multiple QE train
2H OMAS 102–108 s�1 Variable Angle Spinning w/CQ only
2H OMAS/CSA 102–108 s�1 Includes CQ and CSA
I = ½ 1-PULSE 102–104 s�1 Static and OMAS w/CSA
I > 1 Static 105–108 s�1 Central transition only
I > 1 OMAS 105–108 s�1 Central transition only
I > 1 QCPMG 105–108 s�1 Central transition only
(user routine) — User-defined experiment
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2.9. Powder averaging

It is well known that simulations of NMR spectra of solid pow-
ders are computationally demanding because they must be re-
peated for many hundreds or even thousands of different powder
orientations. Considerable attention has been paid to this problem
in the literature [54]. The general aim is to replace the exact inte-
gral over powder orientations by a discrete sum that has the fewest
possible terms needed to approximate the exact result within a
specified tolerance. It has long been realized that the least efficient
procedure is to divide the integration interval for each powder ori-
entation angle into a large number of equal intervals. Levitt and
coworkers [54] classify the large number of alternative procedures
into those based on ‘‘geometry”, which attempt to construct sets of
orientations that define equal solid angles over the unit sphere, and
those based on ‘‘mathematics” that attempt to annihilate as many
higher moments as possible of the function to be integrated, ex-
panded in an appropriate basis set.

Most if not all of the attention paid to this problem in the NMR
literature is concerned with simulating the time evolution of the
density operator governed by unitary propagators, i.e. without
attention to stochastic dynamics. It is not obvious whether any of
the commonly used procedures are truly optimal for systems with
slow or intermediate time scale dynamics. In part for this reason,
EXPRESS offers a choice of tiling schemes. In practice, however, it
appears that the commonly used ZCW procedure [55,56] is close
enough to optimal that efforts to improve computational efficiency
are better spent on improving other numerical tasks.

For all but one experiment dealt with in EXPRESS, it is sufficient
to integrate over only two of the three powder angles needed to
fully align a crystallite-fixed axis system with laboratory fixed axes
(a,b). The one exception is dynamic line shapes for second order
quadrupole coupling under MAS or OMAS conditions. In this case,
EXPRESS uses full three-angle sets (a,b,c). Anticipating future ad-
vances in defining optimal selection of powder angles, EXPRESS
uses a single subprogram for this purpose, that returns different
sets of powder angles depending on a user-specified calling option.

3. EXPRESS overview

All the options available in EXPRESS are controlled by a MATLAB
graphical interface, shown schematically in Fig. 1. When first in-
voked, EXPRESS displays a list of default parameters and a set of
control buttons, display windows, and parameter input windows.
On-line instructions are available by a toggle that activates ‘‘help
mode”, such that clicking on any other control displays an explana-
Fig. 1. Overview of EXPRESS graphical user interface. Logically related options are
grouped in common panels as described in the text.
tion of how to use that particular control but takes no other action.
Parameters grouped in the ‘‘Experiments” and ‘‘Site Definitions”
panels can be entered in any order, and can be changed at will be-
fore running the simulation. Experiment options currently avail-
able in EXPRESS are listed in Table 1.

Site-specific parameters needed to define a motional model are
entered from the ‘‘Site Definitions” panel. An arbitrary number of
jump frames can be defined, and for each frame an arbitrary num-
ber of sites can be specified. Each site is defined by a set of three
Euler angles that rotate the Cartesian XYZ axes of that frame into
the next frame. Thus for a one-frame problem (e.g., 3-fold hops
as a model of methyl rotation), the site angles rotate each orienta-
tion of the relevant tensor PAS axes into coincidence with crystal-
fixed axes, while for a two-frame problem, the first frame site an-
gles rotate each PAS orientation into coincidence with the Carte-
sian XYZ axes of an intermediate jump frame, whose possible
orientations with respect to crystal-fixed axes are defined by the
site angles specified for the second frame. Thus if the user defines
NF frames, with N1 sites in frame 1, N2 sites in frame 2, etc, the total
number of equivalent ‘‘one-frame” sites defined with respect to
crystal-fixed axes is NT ¼

QNF
j¼1Nj.

A comment is in order regarding the site angles used in EXPRESS
to specify the orientation of the CSA tensor. In simulations for
which only the CSA tensor is used, this presents no particular prob-
lem. However, quadrupole coupling tensors in EXPRESS make use
of (standard, universally used) Abragam/Hahn conventions
[44,57] with regard to assignment of principal components to mol-
ecule-fixed axes, while CSA tensors make use of different (standard,
though not quite universal [48]) conventions. Hence, if the trans-
formation angles are specified separately for each tensor, it would
not be easy to determine the relation between these angles and the
relative orientation of the EFG and CSA tensors for each site. EX-
PRESS avoids this difficulty by the pragmatic expedient of directly
specifying the latter whenever possible. Thus, for simulations that
make use of both EFG and CSA tensors, the Euler angles specified
for each site orientation are those for the EFG tensor, while those
specified for the CSA tensor in that site rotate the principal CSA
axes into coincidence with those of the EFG tensor. Thus, by setting
aCSA, bCSA, and cCSA equal to zero for a given site implies coinci-
dence of the CSA and EFG tensor axes for that site unless the EFG
tensor is zero, in which case XCSA specifies the orientation of prin-
cipal CSA components directly.

Unlike its ancestors MXQET [23] and MXET1 [26], EXPRESS fol-
lows the standard [39] convention that (ultimately) expresses the
possible orientations of a crystal-fixed reference frame with re-
spect to principal Cartesian axes of the relevant interaction tensor.
However, it is much easier to visualize the motion with respect to
crystal-fixed axes. This requires specifying the rotational jumps in
terms of the inverse rotation, e.g., the three possible orientations of



Table 2
Representative simulation times for experiments on non-rotating samples.

Experiment Sitesa Points Tilesb Other CPU timec (s)

2H QE 3 � 4 512 233 — 3.1
2H QE 3 � 7 512 233 — 4.2
2H QE 3 � 7 512 1597 — 28.2
2H QE 10 � 3 256 987 — 17.5
2H QE 20 � 3 256 987 — 74.4
2H T1Z 3 � 4 512 233 8 s-values 16.3
2H T1Q 3 � 4 512 233 8 s-values 17.7
2H QCPMG 3 � 4 8192 233 136 echoes 30.4
I > 1 Static 4 256 987 CQ + CSA 6.9

a n �m stands for a simulation with m sites in frame 1 and m sites in frame 2.
b Tiles is the number of (a,b) pairs chosen by the ZCW algorithm.
c Simulation times for a 2 GHz PowerMac G5 running MATLAB release r2007b

under Mac OSX 10.5.
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a C–D bond in a methyl group that executes 3-fold hops. To help
ensure that user-entered site angles describe the intended rotation,
EXPRESS features a ‘‘view sites” option that, for each frame, dis-
plays a color coded animation of three Cartesian axes hopping be-
tween orientations defined by rotations inverse to those entered by
the user. In addition, the complete set of NT one-frame equivalent
Euler angles that rotate each specified orientation directly from the
PAS to the crystal-fixed reference frame are computed and
displayed.

As mentioned in the preceding section, it is often sufficient to
define rotational jumps from site to site within a given frame in
terms of a single rate constant. This is the default option in EX-
PRESS, together with a limited menu of site ‘‘connectivities” that
includes all sites (jumps with equal probability from each site to
any other), jumps along a chain (ki,i+1 = di,i+1), and jumps around a
ring (ki,i+1 = di,i+1 and k1,Nj = 1). It is also possible to display and edit
each frame-specific rate matrix KF, to define jumps at any desired
rate between any pair of sites in that frame. Then, EXPRESS auto-
matically builds the equivalent one-frame rate matrix using the
templates and jump rates defined for each frame. Implicit in this
procedure is the requirement that the rates and site connectivity
defined in any given frame are independent of those in any other
frame. This could be a serious limitation in practice: for example,
in the interior of a hydrophobic protein the barrier to side chain
methyl rotation could be strongly dependent on the orientation
of the methyl spinning axis relative to nearby bulky groups. To al-
low for this and other kinds of correlated jump processes, EXPRESS
offers the option of graphically displaying and editing the entire
one-frame rate matrix element by element.

After specifying frames, site orientations and rates, it remains to
complete the simulation model by specifying site-specific parame-
ters that can are best defined directly in the one-frame representa-
tion. These include principal tensor components (the default is
equal tensor components in all sites) and the relative weights or
site populations.

3.1. Unequal site populations

All of the frame-specific rate matrix templates (and the result-
ing one-frame rate matrix) are maintained internally as symmetric
matrices, with diagonal elements automatically computed initially
as negative sums of off-diagonal elements in the corresponding
rows (or columns). However, if two sites have unequal populations
pj and pk, the one-frame K-matrix must be modified to satisfy the
principle of microscopic reversibility, pjkkj = pkkjk, where kjk is de-
fined as the rate of jumps from site k to site j. (We note in passing
that this convention is transposed from that used in many discus-
sions of stochastic processes, but is entirely consistent with early
discussions of N-site chemical exchange [58]).

In order to avoid numerical difficulties associated with asym-
metric matrices, EXPRESS makes use of a well-known mathemati-
cal procedure for symmetrizing the matrix representation of the
Liouvillian operator. For example, Eq. (2) applied to the case of free
precession of an exchange-coupled set of N single quantum coher-
ences yields the expression

SðtÞ ¼ 1 � eAt �w ð20Þ
where S(t) is the free induction decay signal, A is the asymmetric
matrix (iX + K), 1 stands for the unit vector, and w is a column vec-
tor of site populations. Defining a diagonal matrix whose elements
are Pjk ¼ djkp1=2

j , Eq. (20) transforms to the symmetric form

SðtÞ ¼ w1=2 � e~At �w1=2 ð21Þ

where ~A is given by

~Ajk ¼ ½P�1AP�jk ¼ iXjdjk þ ~Kjk ð22Þ
with

~Kjk ¼ kjkðpk=pjÞ
1=2

~Kkj ¼ kkjðpj=pkÞ
1=2 ¼ ~Kjk

ð23Þ

The EXPRESS simulation routines all make use of this symmetrizing
procedure, and never directly compute matrix functions of asym-
metric matrices. However, unpleasant numerical instabilities can
still arise if the ‘‘jump rate” entered by the user is taken to be kjk

as defined in Eqs. (21)–(23) and the population pj is allowed to be-
come small. To avoid such problems, jump rates entered in the EX-
PRESS rate matrix templates are always interpreted as the
arithmetic mean of the forward and reverse rates, k = (kjk + kkj)/2.
This implies that off-diagonal elements ~Kjk are given by the numer-
ically stable relation

~Kjk ¼ ~Kkj
2kðpjpkÞ

1=2

pj þ pk
ð24Þ

It can be shown that while the diagonal matrix element
~Kjj ¼ Kjj ¼ �

PN
k–jkjk is still just minus the inverse lifetime in site j,

the definition of k as the arithmetic mean of forward and reverse
rates has the somewhat disconcerting consequence that �~Kjj is
not equal to the sum of off-diagonal elements in the corresponding
column of ~K .

3.2. Algorithms and computational efficiency

EXPRESS simulates time domain signals for each of the experi-
ments listed in Table 1 by evaluating a (non-unitary) matrix prop-
agator E(Dt) where Dt is the user-specified dwell time, and then
computing the N values of the vector M of relevant single quantum
coherences by recursion relations of the form

Mnþ1 ¼ Mððnþ 1ÞDtÞ ¼ E �Mn ð25Þ

Eq. (25) (and the evaluation of the propagator itself) is carried out
inside a loop over a user-defined set of powder increments.

For non-rotating samples, the key step in computing the prop-
agator is evaluation of the matrix exponential, exp(ADt), where A
is the complex, non-Hermitian matrix given in Eq. (2). EXPRESS
accomplishes this time consuming task using the built-in MATLAB
routine EXPM. Timing tests reveal that this procedure is typically
more efficient than direct diagonalization of A itself, perhaps be-
cause the latter procedure requires computing both left and right
eigenvectors. MATLAB matrix routines make use of precompiled,
platform-specific optimized libraries for matrix operations, and
are significantly more efficient than FORTRAN routines previously
used, for example, in MXQET. Times required for typical simula-
tions of experiments on non-rotating samples are summarized in
Table 2 and for rotating samples in Table 3.



Table 3
Representative simulation times for experiments on rotating samples.

Experiment Sitesa tR
b Pairsc Sized Points Tilese CPU timef (s)

2H OMAS 3 � 4 25 4 108 256 144 18.8
2H OMAS/CSA 3 � 4 25 4 108 256 144 39.8
2H OMAS 3 � 4 25 4 108 512 144 22.1
2H OMAS 3 � 7 25 4 189 256 144 95
2H OMAS 3 � 7 25 4 189 512 144 116
2H OMAS 3 � 7 25 4 189 1024 144 209
2H OMAS 3 � 7 25 4 189 2048 144 323
2H OMAS 3 � 7 25 6 273 2048 144 737
2H OMAS 3 � 17 6 15 144 8192 144 62208
I > 1 OMAS 3 � 4 35 3 84 256 987 86

a n �m stands for a simulation with m sites in frame 1 and m sites in frame 2.
b Spin rate (kHz).
c Number of sideband pairs, user-selected to be �2–3 times the number of

observable pairs.
d Floquet matrix size.
e Tiles is the number of (a,b) pairs chosen by the ZCW algorithm.
f Simulation times for a 2 GHz PowerMac G5 running MATLAB release r2007b

under Mac OSX 10.5.
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It is evident from the timing comparisons in Tables 2 and 3 that
the time required for an EXPRESS simulation varies from a few sec-
onds to several minutes or more depending on the particular
experiment and the number of sites, powder tiling increments,
and FID points computed. For models with up to 20–30 sites, it is
often possible to compute an adequately accurate line shape (or
set of partially relaxed line shapes) in less than a minute or two.
The simulation time is not a strong function of site connectivity,
the relative magnitudes of site frequency differences and jump
rates, or the nature of the tensor interactions. Wide powder pat-
terns require far more time to simulate than narrow ones, since
more powder increments are then needed to achieve convergence.

MAS simulations tend to be more time consuming than corre-
sponding simulations for non-rotating samples, because simple
matrix exponentiation fails when the site frequencies are time
dependent. Within the framework of discrete site-to-site jumps,
it is possible by means of Floquet theory to replace A(t) by a much
larger, but time independent matrix AF [29,50,59]. The line shape,
including MAS and OMAS sidebands, can then be computed by a
formalism identical to that used for non-rotating samples. Levitt
et al. [12,60] compared the efficiency of the Floquet approach to
computation of the matrix propagator by subdividing the rotor
period into a sequence of short intervals Dt for which A(Dt) is
effectively time independent. They concluded that this direct ap-
proach is usually more efficient [12], especially for a large number
of sites. However, advances in computer power and the technology
of MAS NMR prompted us to re-examine this conclusion. In partic-
ular, MAS probes that spin at rates up to 65–70 kHz are now com-
mercially available, and special purpose probes capable of spinning
at rates up to 80 kHz have been described in the literature. For
these fast spin rates, the number of spinning side bands (and hence
the number of required Floquet states) is not prohibitively large,
even for a full width deuteron powder spectrum. Moreover, code
profiling reveals that even for large scale MAS simulations (matrix
size �1000), as much as 80% of the CPU time used by EXPRESS is
spent on recursive FID propagation rather than matrix exponenti-
ation. Perhaps this is a consequence of MATLAB’s internal use of
Pade approximants rather than full eigenvalue calculations for ma-
trix exponentials. In any case, the Floquet approach used in EX-
PRESS is adequate for all but the most time consuming
simulations. (The largest simulation we have done is a 57-site 2H
MAS simulation with 233 powder increments, 8192 FID points,
and 12 sideband pairs (matrix size 1425 � 1425) that required
�9 h of computer time on a 2.3 GHz dual-processor Mac Power-
book Pro, running 64 bit MATLAB).
3.3. Parameter optimization

For a general N-site jump problem with quadrupole coupling
and chemical shift anisotropy there are, in principle,
13N � 1 + N(N � 1)/2 independent parameters: 2N principal EFG
tensor components, 3N principal CSA tensor components, 6N inde-
pendent sets of PAS tensor orientations, N � 1 relative populations,
and N(N � 1)/2 independent jump rates. Thus for a 20 site problem,
EXPRESS requires specification of no less than 437 parameters. The
situation is somewhat analogous to classical molecular dynamics
(MD) simulations of the trajectories of N interacting particles: in
neither case is it possible or appropriate to ‘‘determine” all the rel-
evant parameters by matching simulations to the results of any
particular experiment. For N-site jump problems in solid state
NMR, a crucial part of defining the model is inventing a procedure
to reduce the number of adjustable parameters to a tractable value
such as three or four.

In many cases, it is possible to estimate values of the principal
tensor components by theoretical computation or measurements
on related materials, and to reduce the number of site orientations
by invoking local symmetry. However, the number of adjustable
parameters is still uncomfortably large, especially for models of
small angle motion along a multi-dimensional angular trajectory.
An excellent example of one way to proceed in this commonly
occurring situation has recently been described by Meints et al.
[61], who used the procedure of Nadler and Shulten [62] to make
a discrete, tri-diagonal approximation to the Smoluchkowski oper-
ator for rotational diffusion subject to a multi-dimensional poten-
tial energy function. A different option, perhaps more appropriate
for disordered systems, is described in Section 4.

EXPRESS preserves all the parameters needed for a simulation in a
single data structure, which is saved on disk and passed as an argu-
ment to individual subroutines specific for particular experiments. It
is therefore straightforward, in principle, to incorporate those sub-
routines in automatic fitting programs designed to deliver best fit
parameter values by nonlinear least squares procedures. In practice
this approach is rather inefficient (each iteration on a set of N param-
eters requires at least 2N complete simulations for gradient-based
algorithms). It would also be advisable to incorporate user-defined
constraints, such as positive jump rates. A better use of the EXPRESS
simulation routines is to incorporate the parameter file and calls to
the simulation routine in a MATLAB script that generates libraries
of simulations in which relevant parameters are stepped through
user-defined ranges. Constructing such a library may take hours or
even days of computation time but once built, the library can be used
as a look-up table for very efficient identification of minima in least
squares error surfaces.

Matching EXPRESS simulations to experimental relaxation time
data presents special problems. It is definitely not a good idea to
try to match EXPRESS simulations to a set of experimentally par-
tially relaxed line shapes: the latter are subject to artifacts associ-
ated with finite pulse width effects while EXPRESS assumes
artifact-free, d-function pulses. The most important finite pulse
artifact is that of non-uniform initial excitation, which leads to sig-
nificant distortion of the partially relaxed line shape at intermedi-
ate values of the recovery delay time. In addition to a (minimal) set
of standard routines for data processing (left shifts, apodization,
Fourier transformation, phase correction, etc), EXPRESS includes a
set of utilities for fitting a three-parameter, single exponential
recovery function to user-defined points in a simulated set of par-
tially relaxed line shapes. Even in cases where the simulated (and
experimental) recovery curves are mildly non-exponential, match-
ing these simulated ‘‘anisotropy profiles” to those generated by the
same procedure applied to real experimental data avoids most of
the pitfalls associated with finite pulses.



Fig. 2. Simulated quadrupole echo spectra for a librating, rotating methyl group. (A)
Libration of the methyl spinning axis between two sites along an arc from 0� to 30�.
(B) Nearest neighbor jumps among three sites 0�, 15�, 30� along the same arc.
Libration rates are indicated next to each line shape, other simulation parameters
are given in the text. Note the difference in powder pattern ‘‘horn” line shapes for
two and three site jumps at intermediate libration rates �105 s�1.

Fig. 3. Partially relaxed 2H quadrupole spectra simulated in response to an
inversion recovery pulse sequence, using parameters given in Table 4.

Table 4
Site angles, jump rates and other parameters for a 2-frame model of librational
motion in dimethylsulfone. Motion in frame 1 (rate k3) is 3-fold hops about the
methyl C3v symmetry axis, which itself executes 2-fold p-flips about an axis oriented
at 53� to the z-axis of frame 2.
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4. Illustrative simulations

4.1. 2H quadrupole echoes

Fig. 2 shows simulated 2H quadrupole echo spectra for a rapidly
rotating methyl group whose rotation axis jumps at rate k2 be-
tween two orientations, (a2,b2,c2) = (0,0,0) and (0,30,0) (Fig. 2A)
or three orientations, (a2,b2,c2) = (0,0,0), (0,15,0) and (0,30,0). In
these simulations methyl rotation was modeled as 3-fold jumps
at rate k3 = 5 � 109 s�1, the angle b1 with respect to the 3-fold
methyl rotation axis was 74�, and in all sites the PAS values
CQ = 155 kHz and g = 0 were used.

For both models, fast rotation of the methyl group results in an
average quadrupole coupling tensor with g = 0 and
hCQ i ¼ 1

2 ð3 cos2 b1ÞCQ ¼ �59:8 kHz, whose principal z-axis is coin-
cident with the methyl spinning axis. Librational motion of this
axis, when modeled as jumps between different values of Euler an-
gle b2, reduces the average values of field gradients qZZ and qXX

while leaving qyy unchanged. Thus for fast libration
(k2 > 5 � 105 s�1), both models produce slight further reduction
in the average CQ value and also induce an effective asymmetry
parameter whose magnitude depends on the amplitude of the
libration. In the intermediate regime, 103 < k2 < 105 s�1, the line
shape near the horns of the powder pattern is sensitive to details
of the libration trajectory: two-site jumps between 0 and 30�
(Fig. 2A) produce a quite different line shape than 3-site jumps
over the same trajectory (Fig. 2B).

4.2. 2H T1Z simulations

Mechanistic details of motion that is fast enough to completely
average site-specific deuteron quadrupole coupling tensors can be
investigated by measuring the orientation dependence of spin lat-
tice relaxation times [63,25]. Using an algorithm described origi-
nally by Wittebort et al. [24], EXPRESS simulates deuteron spin
response to the well known inversion recovery pulse sequence,
180-sd-90X-s1-90Y-s2-ACQ, by generating sets of partially relaxed
quadrupole echo spectra as a function of the relaxation delay, sd.
A typical example is shown in Fig. 3.

These spectra were generated for the six-site model whose
parameters are listed in Table 4. This is an accurate model for
the well known two-site jump motion in dimethylsulfone
[64,11,65], augmented with explicit methyl rotation to account
for spin lattice relaxation. Note that it is easy to specify the Euler
angles that define 3-fold hops in frame 1 (methyl rotation) and
the 2-fold motion (p-flips) of the C3 spinning axis in frame 2.
EXPRESS automatically generates and displays the Euler angles
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for an equivalent set of six sites, which are much harder to
visualize.

The simulated partially relaxed line shapes should not be
matched to experimental spectra, which inevitably suffer distor-
tions (especially near the ‘‘null” value (50 ms in Fig. 3) due to
imperfect inversion and spectral coverage. Instead, EXPRESS allows
the user to define an appropriate window and range of points, and
automatically fits the selected points from each partially relaxed
spectrum to a three-parameter, single exponential function of the
form

MðsÞ ¼ Mð1Þ þMð0Þe�sd=T1Z ð26Þ

where M(0) is the initial inversion intensity and Mð1Þ is the equi-
librium intensity after full recovery. Allowing both these parame-
ters to vary across the line shape (as well as T1Z itself) yields
reliable best-fit T1Z values even when inversion is not ideal
[26,28]. EXPRESS includes facilities for displaying the resulting
best-fit T1Z values as a T1Z anisotropy profile, i.e., a plot of T1Z vs. dis-
placement from the center of the line shape. We emphasize that T1Z

as defined in Eq. (7) applies only to the total Zeeman magnetization
(i.e., the sum of the intensities of each component of the quadrupo-
lar doublet) for a given crystallite, and even in this case the recovery
can be non-exponential since many crystallites contribute to the to-
tal intensity of a given point on the line shape [63]. Thus, the orien-
tation-dependent relaxation rate determined by fitting each point
on the line shape to Eq. (26) represents an operational average. This
limitation is, however, not serious. EXPRESS simulations for a wide
class of models (including that of Table 4) show that non-exponen-
tial recovery only becomes evident after two or three full decades of
recovery, and thus very hard to detect. As long as the orientation-
dependent relaxation rates are extracted from experimental and
simulated spectra obtained by the same procedure over the same
range of s-values, they can be used to determine best fit parameters
of motional models. EXPRESS computes T1Z values determined from
the recovery of mirror-image points with respect to the center of
the line shape.

It is often remarked that motions much slower than the Larmor
frequency are too slow to influence spin lattice relaxation, but the
situation is more complicated for motions occurring simulta-
neously on widely different time scales. Fig. 4 compares T1Z anisot-
ropy profiles for fast methyl rotation with those simulated for
several values of the two-site jump rate k2 according to the model
in Table 4. The general effect of k2 is to decrease T1Z near the horns
Fig. 4. Simulated T1Z anisotropy profiles for the model defined in Table 4. Circles;
k2 = 2000 s�1. Squares; k2 = 20,000 s�1. Diamonds; k2 = 50,000 s�1. Dotted line:
anisotropy profile for 3-fold methyl jumps.
of the powder pattern (�±20 kHz) and increase it at the shoulders
(�±20 kHz), thereby decreasing the overall anisotropy. This effect
has nothing to do with spin diffusion (a phenomenon that is not in-
cluded in EXPRESS. Within a given crystallite, EXPRESS assigns the
same, orientation-dependent T1Z value to all sites, as given by Eq.
(7). However, as k2 increases, it becomes comparable to or larger
than the site frequency differences in a progressively larger frac-
tion of crystallite orientations, and any given precession frequency
therefore reflects a wider range of crystallite orientations. For the
case at hand, this T1Z averaging effect is complete for k2

>50,000 s�1. EXPRESS will not reproduce the methyl-only anisot-
ropy curve as k2 tends to zero, because Eq. (7) is not valid in that
limit. It is interesting that for this particular model, contributions
of the slow process to T1Z are greatest at the shoulders, vanish at
the center, and decrease with increasing k2 near the horns of the
powder pattern. Whether or not this behavior is model-dependent
remains to be investigated.

4.3. 2H T1Q simulations

For fast and intermediate time scale motion, the anisotropy of
T1Z is governed by the underlying anisotropies of the two spectral
densities J1ðx0Þ and J2ð2x0Þ. In absence of ultraslow motion, the
decay rate of quadrupole order, 1/T1Q, is determined by J1ðx0Þ
alone and hence provides complementary information to T1Z [38].
In order to suppress potential complications from magnetization
transfer effects (and to increase signal/noise) it is usual to perform
such experiments [66] by following the orientation-dependent de-
cay of partially relaxed spectra following more or less uniform,
broad band excitation of quadrupole order. EXPRESS includes op-
tions for generating and analyzing such spectra. Fig. 5 shows a typ-
ical simulated T1Q experiment, with the same parameters used to
generate the T1Z experiment in Fig. 3 (except k2 = 50,000 s�1). In
principle, both the Dm = +1 and Dm = �1 transitions contribute
to the decay of each point inside the horns of the powder pattern.

After ideal, broadband excitation of quadrupole order either the
+1 or �1 transition has been inverted (for all crystallite orienta-
tions), and according to Eq. (4) will recover as a sum of two expo-
nentials. Only the difference between the two transitions decays
with time constant T1Q. EXPRESS avoids the 2-fold expense of com-
puting the time evolution of both transitions by a simple trick:
Fig. 5. Stack plot of partially relaxed spectra following initial broad band excitation
of quadrupole order, using parameters listed in Table 4 except k2 = 50,000 s�1.
Relaxation delays, s, between 1 and 400 ms are shown. Inset: equilibrium
quadrupole echo spectrum showing a central feature due to intermediate two-
site exchange.



Fig. 7. Simulated QCPMG spectrum (solid line) and quadrupole echo spectrum
(dashed line) for urea-d4 octanoic acid inclusion compound, using parameters listed
in Table 5. The quadrupole echo simulation required 244 s cpu time for 256 points
with 46,368 tiles, running under 64-bit MATLAB (release R2008b beta) on a 2.3 GHz

Table 5
Site angles, jump rates and other parameters for a 2-frame model of double axis p-
flips in urea-d4. Motion in frame 1 (rate k3) is 180� jumps about the bisector of the D–
N–D bond angle, and in frame 2 it is whole-body 180� jumps about the C–O bond axis.
Interaction strengths and rates are appropriate [15] for urea-d4 in an inclusion
compound with octanoic acid. For the QE simulation, 256 fid points were computed
while for MAS and QCPMG, 4096 points were needed. Fifteen side band pairs were
included in the MAS simulation.
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Only the Dm = +1 transition is considered, and signal from each
crystallite is assumed to decay exponentially with time constant
T1Q given by Eq. (5). After performing the powder average, the fre-
quency domain signal is processed as part of the Fourier transform
to ensure that one side of the spectrum is inverted. Clearly, this
procedure depends on the assumption of ideal, broadband excita-
tion, and direct comparison of simulated line shapes with
experimental ones is not appropriate. Nevertheless, reliable, orien-
tation-dependent values of an effective T1Q can usually be obtained
by monitoring the decay of the difference intensity between points
symmetrically placed with respect to the center of the powder pat-
tern. (An exception arises if chemical shift anisotropy is large en-
ough to destroy the mirror image powder pattern symmetry).
Fig. 6 shows T1Q anisotropy profiles generated in this fashion for
the same system considered in Fig. 4.

Even though the computed T1Q values depend only on J1ðx0Þ
and inequality k2� x0 is well satisfied, the slow motion produces
the same sort of leveling effect on T1Q anisotropy as it does for T1Z.
However, the behavior near the center of the powder pattern is
more complicated. For methyl rotation alone (dashed line) T1Q is
a maximum at the center of the powder pattern, while for all the
simulations with finite k2 it is actually a minimum. Presumably,
this reflects the range of crystallites that contribute to the central
feature of the powder pattern as shown in the inset of Fig. 5. While
there is experimental evidence (see Fig. 6 of Ref. [65]) that such a
minimum exists for dimethylsulfone-d6 at 298 K, uniform excita-
tion of quadrupole order is especially difficult to create near the
center of the powder pattern.

4.4. 2H QCPMG and MAS simulations

Magic angle spinning [11,29] and quadrupolar Carr–Purcell–
Meiboom–Gill [30,67] experiments offer similar advantages of sig-
nal to noise enhancement with respect to simple quadrupole echo
spectra: in both cases, the sensitivity improvement is given
approximately by the ratio of the powder pattern line width to
the width of a single side band, divided by the number of side
bands. Experimentally, enhancements on the order of 20 to 30
are common. This useful feature of the two experiments was a pri-
mary motivation for developing algorithms for their simulation.
Here, we use EXPRESS to assess the dynamic information accessi-
ble from these experiments.

We consider the familiar double-axis rotations that occur in
urea [68] and urea inclusion compounds [69,70,15]. The EXPRESS
Fig. 6. Simulated T1Q anisotropy profiles for the model defined in Table 4. Circles;
k2 = 2000 s�1. Squares; k2 = 20,000 s�1. Diamonds; k2 = 50,000 s�1. Dashed line:
anisotropy profile for 3-fold methyl jumps.

Macbook Pro. The 4096 point, 377-tile QCPMG spectrum required 159 s.

Fig. 8. Simulated MAS spectrum (solid line) and quadrupole echo spectrum (dashed
line) for urea-d4 octanoic acid inclusion compound, using parameters listed in Table
5. The 4096 point, 1597-tile MAS simulation required 121 s cpu time, running under
64-bit MATLAB (release R2008b beta) on a 2.3 GHz Macbook Pro.



Fig. 10. 2H OMAS (115.1 MHz) simulation of bulk liquid-surface exchange with one
diamagnetic and one paramagnetic surface site. The rotor spinning axis is offset 0.5�
from the magic angle. The jump rate is indicated in the figure for each simulation.
Other EXPRESS parameters for this model are given in the text.

Fig. 11. Bottom trace: Expanded scale of the central region of the spectrum from
Fig. 10 for jump rate 100 s�1. Top trace: simulated spectrum with the same
parameters except that the paramagnetic tensor for the surface site has coincident
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parameters summarized in Table 5 for this system are those ob-
tained by fitting 2H OMAS data obtained at 46 MHz and 333 K
[15]. Note that the site order and angles differ from those reported
in Ref. [15], in which Euler angle b refers to rotation about the
intermediate x rather than y-axis. Also, due to a misunderstanding
about the philosophical meaning of p, the rotor offset angles re-
ported in Ref. [15] are about three times smaller than those actu-
ally used. The simulated QCPMG (Fig. 7) and MAS (Fig. 8) spectra
both consist of narrow side bands, whose intensity envelope
approximates the profile of the quadrupole echo spectrum (dashed
line).

The rapidly decaying quadrupole echo signal required computa-
tion of only 256 points (dwell time 2.5 ls), but this is more than
offset by the need to compute no less than 46368 ZCW tiles to
achieve convergence to a smooth powder line shape. Even though
the narrower lines of the MAS and QCPMG spectra required com-
putation of 8 times more points, these simulations were complete
in�1/2 to 2/3 the time of the QE simulation. This is a manifestation
of the same phenomenon that gives better signal to noise ratio for
MAS and QCPMG experiments: concentration of the observed sig-
nal into narrow spectral regions. As expected, simulations for off-
magic angle spinning (data not shown) require more powder incre-
ments and become rapidly more time consuming as the rotor angle
deviates from the exact magic angle condition.

For both MAS and QCPMG, the envelope of sideband intensities
is sensitive to roughly the same kinetic window as the QE spec-
trum and the side band line widths extend both ends of the kinetic
window by about an order of magnitude. However, the mechanism
of echo formation is entirely different in the two experiments. This
leads to a subtle difference in the side band line widths, as demon-
strated in Fig. 9.

In the MAS simulation, side band line widths are almost con-
stant while for QCPMG, side bands outside the powder pattern
horns are �2.5 times sharper than in the middle of the spectrum.
This phenomenon can be understood qualitatively by considering
the MAS experiment in terms of a time independent reference set
of crystallites defined by a common, fixed orientation of the rotor
axis in the crystal-fixed frame [71]. Sample rotation carries individ-
ual crystallites into and out of this frame, typically at a rate fast en-
ough compared with the difference in their orientation-dependent
transverse relaxation rates to result in significant averaging. No
such transport occurs for a stationary sample, and the line widths
for different side bands therefore reflect contributions from differ-
ent sets of crystallite orientations.
Fig. 9. Side band line widths determined from the QCPMG and MAS simulations
shown in Figs. 7 and 8, respectively. Dashed lines connecting the points are meant
only to guide the eye.

principal axes with the electric field gradient tensor.
4.5. 2H dynamics in paramagnetic systems

EXPRESS offers the option of including chemical shift anisotropy
simultaneously with first order quadrupole coupling in MAS and
OMAS simulations. This is rarely necessary for diamagnetic mate-
rials even at high fields, since sample rotation at speeds �25 kHz
or higher is sufficient to suppress all but the largest deuteron
chemical shift anisotropy. However, for paramagnetic materials,
the large electron-nuclear dipolar coupling combined with g-ten-
sor anisotropy produces an interaction that is formally equivalent
to chemical shift anisotropy [72] but quite comparable in magni-
tude to quadrupole coupling. Figs. 10–12 illustrate several features
of EXPRESS that may prove useful for understanding jump dynam-
ics in such systems.

We consider a hypothetical three-site model for an acetylenic
deuteron characterized by quadrupole coupling constant
CQ = 200 kHz and asymmetry parameter g = 0. Site 1, chemical shift
riso = 7 ppm, represents deuterons adsorbed at a diamagnetic site
on a catalytic surface. Site 2, representing an isotropic liquid, has
zero quadrupole coupling and zero isotropic chemical shift. Site 3



Fig. 12. Bottom trace: expanded scale of the central region of the spectrum from
Fig. 10 for jump rate 108 s�1. Top trace: simulated spectrum with the same
parameters except that the paramagnetic tensor for the surface site has coincident
principal axes with the electric field gradient tensor.

Fig. 13. Simulated 35 kHz MAS spectra (bR = 54.74�) for the central transition of
183.3 93Nb with second order quadrupole coupling, undergoing jumps among three
sites such that the motionally averaged quadrupole coupling tensor is zero. The
jump rate (s�1) is indicated for each spectrum.
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is a paramagnetic surface site for which the effective CSA tensor
has Dr = 500 ppm, riso = 200 ppm, g = 0.5, and a principal z-axis
rotated by angle bCSA with respect to the principal z-axis of the
quadrupole tensor in site 1. Sites 1 and 3 have equal population
and cannot exchange directly, but both can exchange at the same
rate with liquid site 2, whose population is only 0.1 that of sites
1 or 3. Simulated OMAS spectra (spin rate 35 kHz, OMAS offset
0.5�, Larmor frequency 115.1 MHz) are shown in Fig. 10 for jump
rates between 100 and 108 s�1.

The Floquet basis included 25 states for each site. The simulated
free precession signals at either end of the kinetic window needed
8192 simulation points to reproduce the decay of narrow spectral
features, and 4181 ZCW tiles for a convergent powder average.
Each such simulation required �1 h of cpu time; much less time
was needed for intermediate jump rates.

The low population of site 2 (liquid) causes its spectrum (a sin-
gle line at zero frequency) to broaden most rapidly with increasing
jump rate. Direct exchange between surface sites is not permitted
by the model, but the indirect 1–2–3 two step exchange neverthe-
less broadens the sideband manifolds associated with surface sites
1 and 3 and these begin to collapse as the jump rate approaches 2p
(200 ppm � 115 MHz) � 105 s�1. For faster jump rates, the spec-
trum sharpens into a manifold of side bands characterized by a sin-
gle, motionally averaged quadrupole coupling tensor and a single,
averaged paramagnetic tensor. The advantage of investigating such
phenomena via OMAS rather than exact magic angle spinning
arises from the controlled reintroduction of the second rank tensor
interactions, manifested in the shape of individual side bands.
Some of these are shown on expanded scale in Figs. 11 and 12.

In Fig. 11 (jump rate 100 s�1), the multiplet near zero is the cen-
ter band for (diamagnetic) sites 1 and 2, the feature near �35 kHz
is the first spinning side band for site 1 (site 2 has no side bands),
and the features near +23 kHz and �12 kHz are the center band
and first side band for paramagnetic site 3. The side band fine
structure for the diamagnetic site, which arises exclusively from
the quadrupole coupling, in characteristically different from that
due to the paramagnetic site, which arises from a combination of
quadrupole coupling and the paramagnetic coupling tensor. More-
over, the latter depends not only on the relative magnitude of the
two tensors but also on their relative orientations. In the fast mo-
tion limit, Fig. 12, where the center band and all sidebands are gov-
erned by motionally averaged tensors, information about the
relative tensor orientation is still apparent.

Compared with the slow motion spectrum, the differences in
band shape between bCSA = 0� and bCSA = 90� are more subtle, be-
cause the averaged paramagnetic tensor has been reduced by the
exchange process while the quadrupole coupling tensor has not
(except for the �5% decrease in both tensors contributed by resi-
dence in the isotropic liquid site).

We emphasize that EXPRESS is an appropriate vehicle primarily
for theoretical investigations of various models for jump motion of
deuterons in paramagnetic environments. Before using it to match
real experimental data, it would be advisable to incorporate addi-
tional features for including site-dependent paramagnetic contri-
butions [73] to transverse relaxation rates.

4.6. High spin quadrupolar nuclei

Quadrupolar nuclei with (half integral) spin greater than one
comprise nearly three quarters of NMR-active nuclei, but it has only
recently become possible to obtain high resolution, solid state NMR
spectra. MAS spectra of the central transition is the most widely
used technique. There is growing recognition [74,16,17,75] that dy-
namic information can be obtained from such spectra by methods
analogous to those familiar to practitioners of deuteron solid state
NMR. EXPRESS was developed, in part, to extend the general for-
malism for deuterons to nuclei with higher spin. As noted in Table
1, facilities are included for simulating non-spinning powder line
shapes, QCPMG multiple echo trains, and MAS/OMAS spectra for
spin 3/2, 5/2, 7/2 and 9/2 governed by a combination of second or-
der quadrupole coupling and anisotropic chemical shift interac-
tions. EXPRESS does not include routines for jump-dynamic
contributions to spin lattice relaxation of high spin quadrupoles,
although such routines would be easy to implement, because in
most cases the dominant relaxation mechanism involves spin-pho-
non coupling rather than single-particle jumps [76,53].

Figs. 13 and 14 illustrate features of dynamic line shapes that
appear only for second order quadrupole interactions. We consider
a system with three sites, defined by Euler angles (a,b,c) = (0,0,0),
(p,p2,p2), and (p2,p2,0). It is easy to verify that the Cartesian
electric field gradient tensor in crystal-fixed axes is diagonal in
all three sites, with principal components diag(qXX,qYY,qZZ), diag(-
qYY,qZZ,qXX), and diag(qZZ,qXX,qYY), respectively. It follows that in
the fast motion limit, all three components of the average electric



Fig. 14. Simulated 35 kHz OMAS spectra (bR = 70.12�) for the central transition of
183.3 93Nb with second order quadrupole coupling, undergoing jumps among three
sites such that the motionally averaged quadrupole coupling tensor is zero. The
jump rate (s�1) is indicated for each spectrum.

Fig. 15. Simulated central transition line shapes for exchange of a spin 7/2 nucleus
between two sites, characterized by different quadrupole coupling and chemical
shift tensors. The slow jump rate, 1000 s�1, is responsible for the side band line
widths in the QCPMG simulation (upper trace), but has no appreciable effect on
either the MAS spectrum (middle trace) or the static line shape (bottom trace).
Other simulation parameters are given in Table 6.

Fig. 16. Simulated QCPMG spectra for the same system as in Fig. 15, with different
values of the pulse spacing 2s (ls). In each spectrum, side bands occur at integer
multiples of 1/(2s). For reasons discussed in the text, side band line widths decrease
sharply with decreasing pulse spacing.

Table 6
Simulation parameters for two-site exchange of 139La with second order quadrupole
coupling and chemical shift anisotropy.

Experimenta Tilesb Points cpu timec (s)

1-pulse static line shape 28,757 512 252
25 kHz MAS (bR = 54.74�) 6765 512 155
QCPMGd s = 50 ls 377 16,384 84
QCPMG s = 200 ls 610 16,384 136

a In both sites, CQ = 15 MHz and g = 0.The Euler angles for the EFG tensor are
(0,0,0) in site 1 and (0,90,0) in site 2. The CSA tensor is zero in site 1 but in site 2,
diso = 100 ppm, Dr = �200 ppm, and gCSA = 0.5. The jump rate is 1000 s�1.

b Two-angle ZCW tiling was used for the static and QCPMG simulations, three-
angle tiling was used for the MAS simulation.

c cpu times refer to a 2.0 GHz PowerPC G5 running MATLAB release R2007b
under MAC OSX 10.5.4.

d The spectral window for QCPMG simulations was 1000 MHz to ensure sufficient
points per echo, and 100 kHz for the other simulations.
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field gradient tensor are zero. Fig. 13 shows line shapes simulated
as a function of jump rate for a 35 kHz MAS experiment (rotor axis
angle bR = 54.7356�) on the central transition for a spin 9/2 nucleus
with CQ = 40 MHz and g = 0.7 in all sites. (These are typical param-
eters for 93Nb in perovskite oxides [77]). As described previously
by Schurko et al. [16], model-dependent line shape changes are ex-
pected when the jump rate is comparable to the width (in rad/s) of
the rigid lattice MAS spectrum, 2p(2 � 104) � 105 s�1 in this exam-
ple. Fig. 13 also shows, as expected, that jumps occurring on the
same time scale as the rotor period interfere with MAS side band
formation. Also as noted by Schurko et al. [16], the fast motion lim-
iting line shape is not the one computed for a fully averaged quad-
rupole coupling tensor (zero in the present example), because the
site frequencies being averaged are those for a Hamiltonian trun-
cated at second order. The resulting frequencies have tensor com-
ponents of rank zero (the isotropic second order quadrupole shift),
rank 2, and also rank 4. Fast spinning with bR = 54.7356� eliminates
the rank 2 contribution, so the center band (and residual side band)
line shape in Fig. 13 depends primarily on the rank 4 contributions.
These have lower symmetry than the rank 2 contributions and do
not average to zero in the fast limit. Also, the orientation-indepen-
dent rank zero contribution amounts to a (negative) offset of the
spectrum that is independent of jump rate since all sites are as-
sumed to have the same quadrupole coupling constant.

Fig. 14 shows line shapes simulated with the same parameters
as Fig. 13 except the rotor axis angle is now bR = 70.1246�, such
that P4(bR) = 0.

In this case the 4th rank contributions are removed by spinning
and the resulting line shapes reveal effects of motion on just the
second rank terms. As expected, these contributions do vanish for
jump rates much larger than �105. However, the averaging is still
not complete in the sense that the orientation-independent zero
rank term remains. Thus, EXPRESS simulations (and all previously
published simulations of second order quadrupole dynamic line
shapes) fail to reduce to the proper limit as the jump rate ap-
proaches infinity. For jump rates larger than the Larmor frequency
(2p � 183 � 106 �109 s�1 in this example), it is not correct to trun-
cate the Hamiltonian used to construct the stochastic Liouville
operator without first diagonalizing contributions from the (dom-
inant) rate matrix. The latter procedure, if done exactly, should be
valid for all jump rates. However, this procedure is prohibitively
time consuming for all but the simplest problems, since all ele-
ments of the spin density matrix must be considered for every site.
A more effective procedure (at least for non-spinning samples), va-
lid when all the jump rates are on the order of the Larmor fre-
quency or higher, is to first average the complete quadrupole
Hamiltonian over the motion, expand the result to second order
in the usual way, and assign an orientation-dependent width to
each powder increment using Redfield theory. We note in passing
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that the imaginary part of the Redfield spectral density corre-
sponds to a residual (downfield) frequency shift.

Figs. 15 and 16 illustrate how EXPRESS can be used to investi-
gate the different effects of jump dynamics on static line shapes,
MAS line shapes, and QCPMG line shapes for high spin quadrupolar
nuclei. The simulations in these figures were all computed for two-
site jumps with rate 1000 s�1, for a spin 7/2 nucleus such as 139La
that resonates at 105.9 MHz in a 17.6T magnetic field. The quadru-
pole coupling parameters CQ = 15 MHz, g = 0 are the same in both
sites, but the field gradient is site 2 is rotated 90� (about y) with
respect to the site 1 principal z-axis. Also, the chemical shielding
tensor is zero in site 1 but in site 2, diso = 100 ppm, Dr = �200 ppm,
and gCSA = 0.5. Computational details of the simulations are sum-
marized in Table 6. Even though 19 Floquet states per site were
needed to ensure convergence, the MAS simulation required only
�60% as much cpu time as the static line shape, because many few-
er tiles were needed. The required number of tiles (both for QCPMG
and MAS) decreases rapidly with the number of sidebands that
have significant intensity. Thus, even though 16 K points are
needed to define the QCPMG decay, simulations of this experiment
for pulse spacing 2s 6 400 ls are more efficient than either static
line shapes or MAS.

Fig. 15 shows line shapes for all three experiments. In this slow
motion regime, the jump rate has virtually no effect on the static
line shape (bottom trace). Unlike the situation for deuterons,
MAS with 2nd order quadrupole coupling (middle trace) still has
enough residual quadrupole broadening to obscure contributions
from jumps at rates below about 1000 s�1. However, the MAS line
widths are narrow enough in Fig. 15 that spectra for the center
bands of the two sites are completely resolved. For both sites,
the isotropic second order quadrupole shift computed by EXPRESS
agrees with the analytic result for no exchange, dð2QÞ

iso ¼
�45x2

Q ð1þ g2=3Þ=10x0 = �5.4 kHz. The center band for site 2 is
shifted up field from this position by diso = 109.3 MHz �
100 ppm = 10.9 kHz. The spin rate 25 kHz is fast enough to sup-
press contributions from chemical shift anisotropy. Again unlike
the situation for deuterons, the central transition for half-integer
spin I > 1 behaves like a pseudo spin 1/2 system, so the 180� pulses
in the QCPMG pulse train refocus both dIRJ and dð2QÞ

iso . This leads to a
complex set of overlapping side bands (upper trace), but the side
band line widths, which unlike MAS are free from second order
quadrupole broadening, do provide useful dynamic information
about the slow jump rate.

Before leaping to the conclusion that QCPMG is superior to MAS
for investigating slow dynamics of high spin quadrupolar nuclei, it
is necessary to consider the influence of pulse spacing on the side
band line widths. Fig. 16 shows QCPMG spectra simulated for pulse
spacings between 20 and 200 ls. It is apparent that the side band
line widths are anisotropic, strongly dependent on pulse spacing,
and decrease noticeably for pulse spacings shorter than �50 ls.
For small pulse spacings, the site-specific coherences do not have
enough time to accumulate significant phase before the next refo-
cusing pulse arrives. Thus, random jumps no longer result in loss of
phase coherence. This ‘‘spin locking” effect is entirely analogous to
that observed for liquid state CPMG measurements of exchange
among chemically shifted sites [78]. However, unlike the situation
for isotropic liquids, no completely analytic solution for the solid
state QCPMG line widths is possible (even for two-site exchange)
because for any given jump rate, some of the crystallites will exhi-
bit small enough splitting to be in the fast motion limit while oth-
ers will not [30]. Thus, analysis of the QCPMG line widths requires
a complete simulation. Despite this complication, as well as the
need to account for orientation-dependent, underlying homoge-
neous line widths, it appears that QCPMG experiments offer signif-
icant advantages over MAS for investigating dynamics of high spin
quadrupolar nuclei.
5. Conclusions and prognosis

EXPRESS is an efficient, platform-independent program for sim-
ulating effects of jump dynamics on multiple time scales for a wide
variety of solid state NMR experiments, including investigations of
high spin quadrupolar nuclei as well as deuterons. For complex
motion on multiple time scales, EXPRESS provides a useful inter-
face for limiting the number of adjustable parameters to a manage-
able number. For example, the code is sufficiently efficient that
small angle, restricted diffusive motion can effectively be modeled
using the formulation of Nadler and Shulten [62]. Simulations of
magic angle spinning experiments are shown to be surprisingly
efficient compared to those for wide line shapes of stationary sam-
ples, and the general conclusion for deuterons is that MAS is supe-
rior in most respects to static quadrupole echo experiments.
EXPRESS can simulate effects of jump dynamics on deuteron T1Z

and T1Q experiments. It is shown that motions too slow to affect
the line shape directly can profitably be studied via their tendency
to partially average relaxation time anisotropy produced by faster
motions. EXPRESS simulations of jump-dynamic effects on spectra
of high spin quadrupolar nuclei graphically demonstrate the limi-
tations of the semiclassical formulation of this problem, and they
also show that QCPMG experiments on high spin quadrupoles
may be more useful than MAS for quantitative studies of dynamics.
Source code and documentation for EXPRESS is available on our
web site, http://www.wm.edu/nmr.
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